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Abstract—Cybersickness detection is one of the primary tasks
in Virtual Reality (VR) content production. The existing sub-
jective and objective studies on cybersickness give few guiding
implications to VR content creators. To do experimental verifica-
tion on previous hypotheses and propose design guidelines, this
paper investigates the relationship between cybersickness and
postural behavior, by analyzing the surface electromyography
(sEMG) signals and hand movement videos. We conducted a
user study to build the sEMG-video Cybersickness Benchmark
Dataset (sEMG-CBD) and employed statistical analysis to sum-
marize the regular pattern of participants’ dizziness status under
VR experiences. The results indicate that the fluctuations of
cybersickness correlate positively with the extent of forearm
sEMG signals and hand movements. The preliminary analysis
implies the potentiality of sEMG-based cybersickness detection
being used as one of the significant representations of VR viewing
experience, which could contribute to VR content production.

Index Terms—cybersickness, sEMG, postural instability, VR
content

I. INTRODUCTION

With advanced head-mounted displays (HMDs) launched
in recent years, the amount of VR stories is increasing grad-
ually. Though these immersive and interactive artworks push
the boundaries of storytelling and visual demonstration, VR
content is still facing user experience issues. Cybersickness is
one of the critical problems that keeps some users away from
VR content, which has symptoms similar to motion sickness
and sometimes linger on after exposure. To guarantee comfort,
VR content creators need to analyze user experience to avoid
elements triggering cybersickness.

Most cybersickness reasoning [1], [2] methods make it
hard to continuously track the fluctuations during a complete
narrative without any interference. An easy-to-use and impact-
free measuring approach could offer VR content creators more
intuitive and timely feedback on users’ comfort and prefer-
ences. Inspired by the postural instability theory [1], which
states that, when cybersickness occurs, postural perturbation
appears, we analyzed the correlation between cybersickness
and postural behavior, based on sEMG signals and hand
movement videos.
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Fig. 1. The correlation analysis between cybersickness and postural behavior
is based on sEMG signals and hand movement videos, offering VR content
creators a measuring approach to intuitively track users’ dizziness status.

In this paper, we conducted a user study to build the sEMG-
video Cybersickness Benchmark Dataset (sEMG-CBD) and
employed statistical analysis to summarize the regular pattern
of participants’ dizziness status under VR experiences. The
experimental results demonstrate that the fluctuations of cyber-
sickness correlate positively with the extent of forearm sEMG
signals and hand movements, which indicates the potential of
utilizing sEMG as a physiological metric of cybersickness.
Our main contributions include:

• Investigate the correlation between cybersickness and
postural behavior, by analyzing the forearm sEMG signals
and hand movement videos.

• Experiments were designed to evidence the postural in-
stability hypothesis, where the proposed method could
continuously track the perturbation while user watching
VR stories.

• Demonstrate the potential of sEMG signals being used as
a physiological measure of cybersickness in VR content
production.

II. RELATED WORK

To detect cybersickness, previous studies proposed several
subjective and objective measures. The typical subjective
measurements are questionnaires and scales, such as Simulator
Sickness Questionnaire (SSQ) [3], Fast Motion Sickness Scale
(FMS) [4], Motion Sickness Susceptibility (MSSQ) [5] etc.
Whereas they may have lag or possibly break the presence in
VR. To continuously measure cybersickness, objective quan-
titative metrics are used, such as physiological measurements,



Fig. 2. sEMG armband and RGB camera were used to collect data and build
the sEMG-CBD.

heart rate, breathing rate, galvanic skin response, etc [6], which
have been verified that have correlations with cybersickness
intensity.

Based on the postural instability theory, researchers measure
participants’ postural sway time [7] or analyse motion captured
gait data [8] to infer their level of motion sickness. With the
development of eye-gazing technology in HMDs, it has been
validated that eye behavior, such as blinking and pupil posi-
tion, relates to cybersickness [9]. Other electroencephalogram
(EEG) related study shows that participants’ brain activities
are variable during cybersickness [8]. The HbO and HbR of
frontal lobe functional near infra-red spectroscopy (fNIRS)
significantly change when users suffer sickness [10]. HMD
related properties, such as tracking data [11] and recorded
images [12], are also prevalent objective measures, with deep
neural network to interpret sickness severity.

Surface electromyography (sEMG) is a nonlinear and non-
stationary physiological property representing muscular activ-
ity. Features extracted from data could be employed to observe
the changes in sEMG signals. In time-domain amplitudes,
Root Mean Square (RMS) and Mean Absolute Value (MAV)
can describe the amplitude variation in time and estimate
muscle fatigue. Frequency-domain features, such as median
frequency (MDF) and mean frequency (MNF), can indicate
muscle fatigue [13]. sEMG armband is a convenient forearm
wearable device with multi-electrodes. Myo, as a wireless
and non-invasive sEMG armband, released by the Thalmic in
2013, can be utilized for muscle fatigue detection [14] and
gesture classification [13]. In this research, Myo is used to
collect participants’ forearm sEMG signals data during their
immersive experience for cybersickness and postural behavior
correlation analyses.

III. METHOD

In this paper, we would like to analyze the forearm muscular
variation and hand movements to predict when and where
participants have cybersickness in an HMD-wearing immer-
sive environment. The possibility of sEMG being used as a
cybersickness measurement was also evaluated, meanwhile,
user studies were designed to investigate the correlations
between cybersickness and postural behaviors, considering
about cinematography and individual differences.

A. Study Design

Experiments were designed as a within and between-subject
study, using the cybersickness intensity, forearm muscular
variation, and hand movement as dependent variables. The
experiments had four sessions (one instruction session and
three experience sessions) to collect physiological data and
self-reported cybersickness intensity from participants. The
overall data collecting and analysis process is shown as
Figure 2 illustrated.

1) Hardware
The user-study VR story was streaming to a Pico 4 pro,

with 2160 × 2160 pixels resolution per eye, 72Hz refresh rate,
and 105 degrees field of view. The automatic Inter-pupillary
Distance (IPD) adjustment equipped in Pico 4 pro ensured
each participant experienced the content with matched IPD.
The VR story was rendered on an Intel Core i9-10900X CPU
and an NVIDIA GeForce RTX 3090 GPU. Myo armband was
applied to collect forearm sEMG data at a sampling rate of
200Hz. Figure 3 (a) shows the placement of Myo’s electrodes.
Cameras were also used to record videos of participants’
forearm and hand movements at a frame rate of 24fps.

Fig. 3. Illustration of forearm muscle and hand structure. (a) shows the
electrode placement of the Myo armband and the forearm cross-section. (b)
shows the hand joints provided by Mediapipe [15].

2) Individuals
When recruiting participants, MSSQ was used to measure

their susceptibility to cybersickness and screen extremely non-
susceptible users. In the experiment, researchers instructed
participants (all right-handed) to wear Myo armbands on their
right forearm to collect their sEMG data. Participants were
allowed to turn their heads to observe the virtual environment,
whereas they were required to maintain a standing pose with
their arms down naturally and no unnecessary hand move-
ments, to prevent other factors influencing forearm sEMG
signal.

3) Content
The first row images of Figure 4 illustrate the forest touring

VR story designed to induce participants’ cybersickness. To
imitate common tour-based stories and provide immersion
to participants, a low-poly forest asset was chosen as the
background environment, and low-poly animals were placed
along the touring route. The virtual camera followed a preset
track consisting of turns and pedestals at a constant speed to
produce an illusion of self-motion. With light music as the



background music, an AI-generated voice ”please rate” was
played every 15 seconds to remind participants to rate their
scales. The 220-second VR story was presented once in each
experience session. There was a 1-minute pause between two
sessions for participants to rate the SSQ.

B. Participants

34 participants (15 identified as female and 19 identified
as male) were recruited to take part in our study, and each
of them consented to their physiological properties being col-
lected during the experiment. Every participant had a normal
or corrected-to-normal vision (self-reported). All participants
were permitted to discontinue the experiment when they
were incapable of enduring the discomfort. Due to technical
issues associated with the camera and Myo armband, three
sessions of data from two participants were discarded. A male
participant chose to terminate the experiment after finishing his
first session due to severe cybersickness. Another male partic-
ipant’s data were removed because he reported no discomfort
symptoms. The final dataset, therefore, contained 91 sessions
data of from 33 participants (15 females, 18 males) with an
average age of 21.36, standard deviation of 1.98 years, and
MSSQ scores from 8.91 to 148.08 (M = 44.88, SD = 36.74).
5 participants had HMD experiences more than 15 times,
and 29 participants experienced HMD less than 15 times. All
participants had HMD-based VR viewing experiences before.

C. Measurements

We employ 4 measurements to record the mentioned vari-
ables during and after the immersive experience. They are:

• FMS: To estimate the level of cybersickness, participants
were required to rate the intensity of previous 15 seconds
on the FMS scale when the AI-generated voice played.
FMS scale ranged from 0 (”feel no sickness symptoms”)
to 10 (”unable to continue the experiment”). If the
participant rated 8 or above, there would be an option to
continue the experience or not. Five participants reached
8, but all finished the session. The FMS ratings split
sessions into 14 clips.

• SSQ: Before the experience and after each session, par-
ticipants verbally rated the items of SSQ. There were 4
SSQ for each participant: SSQ0, SSQ1, SSQ2, SSQ3.

• sEMG: Forearm muscular activity was measured by Myo
Armband. Both sEMG data during stimulation and before
the experiment (using as baseline data) were collected.

• Video: A camera was used to record participants’ right
forearm and hand movements while viewing VR story.

D. Procedure

All the participants were told the whole procedure and
informed not to consume alcohol or medicines 24 hours before
the experiment. In the experiment, first, the participant were
asked to rate SSQ0. Second, Myo armband was placed on
the participant’s right forearm and manually synced with the
computer. We informed participant to relax their forearm and
recorded the sEMG signals and video for 30 seconds as the

baseline data. Then, the participant had an instruciton session
including HMD interaction, IPD adjustment and controller
mechanism. Third, the participant was asked to allow the
streaming request from the computer and hand back the
controller to keep hands empty and started experience sessions.
During a experience session, participant gave FMS ratings
verbally every 15 seconds. After each session, participant also
rated SSQ verbally while staying in the virtual environment
with the HMD (no camera locomotion) to maintain immersion.
The experience session repeated three times in total. After
finishing all sessions, HMD and Myo armband were removed
from participant, and a semi-structured interview was con-
ducted to learn whether participant was aware of physiological
changes and how participant felt during the experience. It took
25 to 30 minutes to complete the procedure. All these data
were collected to build the sEMG-CBD.

E. Data Processing

SSQ questionnaire has a total score (TS) and three sub-
scores: nausea (N), oculomotor (O), and disorientation (D) [3].
Total scores and subscores of SSQ questionnaires were cal-
culated and conducted a Shapiro-Wilk test. The subscores O
of SSQ1, SSQ2, and SSQ3 were normally distributed while
N, D, and TS were not. Then the Mann-Whitney U test was
conducted between pre and post-experience SSQ scores (SSQ0
and SSQ1, SSQ1 and SSQ2, SSQ2 and SSQ3) to investigate
the differences between them.

FMS scores were used to label sEMG and video data. As
mentioned above, each FMS score denoted the sickness of
all previous 15-second data. When the FMS rating of a clip
was 3, the sEMG and video data in this clip all corresponded
to a rating of 3. For data in the Clipi, their rating would be
FMSi. The method proposed by Islam et al. [6] was applied to
construct the ground-truth of the dataset. The FMS distribution
was divided by quantile into three parts, each representing a
cybersickness class: 1) Low (L), 2) Medium (M), and 3) High
(H). The definition of cybersickness level CSLi at Clipi is:

CSLi =


Low, 0 ≤ FMSi ≤ Q1

Medium, Q1 ≤ FMSi ≤ Q2

High, FMSi ≥ Q2

(1)

where Q1 and Q2 values were 1.0 and 2.0 respectively.
The raw data of the sEMG signal were filtered with a

highpass filter with a cut-off frequency of 45 Hz to remove
unwanted noise. The upper RMS envelope of the signal was
also calculated from each window of size 150ms for better
observation (see the second-row of Figure 4). To investigate
the sEMG signals’ power difference of three classes, the p-
welch function of Matlab was applied to calculate the average
power-spectrum density of each class. The power spectrum
density was converted into decibel power.
feature was a group of features extracted from the filtered

data. Four features were included in the group: MAV, RMS,
MDF and MNF. feature were extracted from the data by
setting the window size equal to the clip length. And feature



Fig. 4. First-row images are the simulation contents of 2nd, 10th, 13th, 14th 15-second. Second-row images show correspondent sEMG signals of channel
7 (muscles flex fingers) from Participant 26, whose cybersickness intensity was L, H, H, and H respectively. Third-row images show the trajectories of hand
joint in y and z axis from Participant 26.

of 8 channels were conducted the Mann-Whitney U test every
two cybersickness classes and the Spearman’s rank correlation
coefficient analysis with FMS ratings and three cybersickness
classes respectively. In order to minimize the demographic
error in the following analyses, the feature of baseline sEMG
signals were also extracted and appended to correspondent
features clips, and the data of the same participant were
rescaled to the range of 0 to 1.

During the experiment, a 1 KHz audio signal was played
at the beginning of each session for video and sEMG data
synchronization. Videos were synchronized and edited to the
same length as the simulation in DaVinci Resolve 18. 3D
coordinates of each hand joint were obtained through the
hand joints detection model bundle of MediaPipe [15]. 11
joints were selected for investigation: 0, 1, 4, 5, 8, 9, 12,
13, 16, 17 and 20 (see Figure 3). These joints represented
the wrist, the carpometacarpal joint (CMC joint), and the tip
of five fingers. The hand joint data of each session were also
divided into 14 clips corresponding to the FMS ratings. The
average value of x, y, and z axis coordinates for each joint
in the clip was computed respectively. The total length of
each joint in the clip varying on the x, y, and z axis was
also calculated. To minimize the individual errors, the data of
average and total length were normalized. The Mann-Whitney
U test was conducted to average and length data of every
two cybersickness classes. The averages and total length were
also conducted with Spearman’s rank correlation coefficient
analysis with FMS ratings and classes.

IV. RESULTS

A. Cybersickenss

The two-tailed p-values of the Mann-Whitney U test are
given in Table I. There were notable differences in all four
types of score of group-SSQ0 & SSQ1 and group-SSQ1 &
SSQ2. Whereas no significant differences were shown in four
types of score of group-SSQ2 & SSQ3.

The mean and standard deviation values of FMS ratings
were computed. The higher peaks of average FMS ratings
were the 2nd, 10th, 13th, and 14th 15-second in each session
(see Figure 4). These peaks could be attributed to specific

TABLE I
P-VALUES OF MANN-WHITNEY U TEST CONDUCTED TO SSQ.

N O D TS

SSQ0 & SSQ1 <0.001 <0.001 <0.001 <0.001
SSQ1 & SSQ2 <0.001 <0.001 <0.001 <0.001
SSQ2 & SSQ3 0.334 0.172 0.707 0.668

VR content with intense camera movements (e.g., turning,
pedestal) as demonstrated in Figure 4.

The SSQ and FMS data suggested that most of the partici-
pants had experienced sickness in the VR story. Greater FMS
ratings were reported when participants experienced more
drastic camera movements. Few differences of cybersickness
severity were observed between experience session 2 and 3.
The reason might be that the experiment duration was too short
for symptoms accumulation.

In the semi-structured interview, participants reported they
felt ”weightless”, ”unsteady”, and ”weak at the knees” watch-
ing those intense camera movements. Participants whose hands
were moving back and forth or whose fingers were shaking
during these clips claimed that they had no awareness of hand
posture changes.

B. sEMG Distributions and Hand Movements

Figure 4 presents the sEMG signals, envelope, and trajecto-
ries of hand joints from Participant 26 (P26) in the 4 content
mentioned above. In these 4 clips, P26 had cybersickness
intensity of L, H, H, and H respectively. Amplitude differences
and peaks of sEMG signals and variations of hand movements
can easily be observed.

The Mann-Whitney U test results of feature show that
there are dissimilarities between class L and H and between
class M and H in the MAV data of sEMG channel 3, 6, and 8
as well as the RMS data of channel 6 and 8. The correlation
matrix of feature of 8 channels is shown in Figure 5. Both
FMS ratings and classes significantly correlate with the MAV
and RMS data of channel 6 and 8 (p < 0.001). The MAV of
channel 3 also has a correlation with FMS ratings and classes
(p < 0.05). The MAV and RMS of channel 7 correlate with
FMS ratings (p < 0.05). All correlated features mentioned



Note: * indicates p-value < 0.05 and ** indicates p-value < 0.01.

Fig. 5. Correlation matrix of FMS ratings and classes and featurecl of
8 channels, which blue represents positive correlation coefficients and red
represents negative coefficients.

have a positive correlation coefficient, which represents that
the MAV and RMS values increase when participants feel
greater sickness.

There are several muscles around these electrodes (shown
in Figure 3). The PL and FCR are near channel 6. Channel 7
and 8 are located around FDP, FCU, and FDS. The channel
3 is placed around EDC and ECRB. PL, FCR, FCU, and
EDC contribute to wrist movement (e.g., wrist flexion and
extending). ECRB is responsible for the extension and stabi-
lization of the wrist. FCU, FDP, and FDS flex the fingers. It is
presumed that the activity of these muscles fluctuates with the
increasing sickness, leading to finger and wrist movements.
However, there is a subtle difference between the correlation
coefficients of FMS ratings and classes. The reason possibly
is that the categorization of L, M, and H rescaled the FMS
ratings. The rescale led to different data distributions and thus
different correlation coefficients.

The amplitude of sEMG signals fluctuates in the magnitude
of participants’ hand movement in the three classes. As the
intensity of cybersickness increases, the sEMG signal has
greater amplitude. The second row of Figure 4 shows the
sEMG signals of P26 in L and H. The peaks of sEMG
signals are significantly higher when they suffer severe levels
of discomfort. Figure 6 shows the average power spectral
density of channel 6 and 8 signals for the three classes of
cybersickness. There is a power increase across frequencies
for participants suffering greater cybersickness. The increases
in the amplitude range and power spectral density indicate the
enhancement of muscle activity, which is consistent with the
correlation results mentioned above.

Table II shows the statistically significant results from the
test conducted on hand joints. The data of joints represented
fingertips have significant differences between class L and H

Fig. 6. Comparing the sEMG signals and power spectrum density of Low
(red), Medium (green), High (blue). (a) and (b) shows the average power
spectrum density of channel 6 and 8 respectively.

TABLE II
THE RESULT OF MANN-WHITNEY U TEST AND CORRELATION ANALYSIS

CONDUCTED TO JOINT MOVEMENT

Note: (a) and (b) shows the significant p-value of Mann-Whitney U test
conducted to the averages and the total length, respectively. (c) and (d) shows
the significant correlation coefficients of correlation analysis conducted to the
averages the total length, respectively. * indicates p-value < 0.05 and **
indicates p-value < 0.01.

in the y-axis and z-axis. Three fingertips (middle, ring, and
pinky) have z-axis movement significantly correlated to the
FMS ratings and classes, and their correlation coefficients are
all negative. The movement of thumb fingertip correlates to
classes in both the y-axis and z-axis. Its correlation coefficient
of the y-axis is positive while the one of the z-axis is negative.
The wrist movements on the z-axis also correlate to the FMS
ratings and classes with a positive correlation coefficient.

It is presumed that participants’ fingers tend to clench and
the thumb may stretch outward when great sickness occurs.
The total length data in the x-axis of wrist and all CMC joints
are significantly different between L and H. Correlations are
found between the wrist and CMC joint’s total length data
of the x-axis and FMS ratings and classes. Meanwhile, the



correlation coefficients are all positive, which indicates that
participants may move their arms laterally from their bodies
more frequently as the cybersickness increases. These results
are in accordance with the sEMG signal analysis results.

V. DISCUSSION

According to experimental results, the signals of specific
sEMG channels, controlling specific hand movements, have
features positively correlated with the severity of cybersick-
ness, while the trajectory and position variations of hand joints
show similar trend as the sickness gets severer; thus, sEMG
signals and hand movements have consistency in changing
when participants have dizzy feeling. Consequently, the corre-
lation between cybersickness and postural behavior has been
verified. Participants’ forearm and hand movements do vary
when they suffer cybersickness. As the sickness increases,
participants may bend fingers or move wrists. The designed
study suggests that sEMG could be able to detect cybersick-
ness by measuring the muscle activities associated with finger
bending and wrist movement. Therefore it is possible to utilize
sEMG analysis as a user cybersickness measurement in the VR
content production process without breaking the presence.

The experimental results on constructed sEMG-CBD show
that the shifting sEMG signals represent the variation of partic-
ipants’ forearm muscle activity. The variation was correspon-
dent to their changes of hand posture. Participants’ unaware-
ness of changes indicated that participants had less hand move-
ment control while experiencing sickness, especially for those
with shaking fingers. Based on postural instability theory,
the uncontrolled variation represent ”perturbations transmitted
from high-mass segments” [1]. Comparing to the obvious
body sway when experiencing cybersickness, the nuance of
forearm sEMG signals is also consistent with the theory, which
hands, fingers and forearms has relatively smaller effect as
low-mass segments. As sickness increases, sEMG signals tend
to have greater amplitude, in accordance with the theory that
magnitude of instability is related to the intensity of sickness.
Though the finding on the relationship between cybersickness
and hand and forearm muscle activity is preliminary, it provide
new support for the postural instability theory.

VI. CONCLUSION

This study aims to explore the relationship between cyber-
sickness and postural behaviors. We conducted a user study
to build the sEMG-CBD and employed statistical analysis to
summarize the regular pattern of participants’ dizziness status
under VR experiences. According to the presented findings
of the study, forearm sEMG signals and hand movements
significantly correlate with FMS ratings. Participants’ forearm
and hand movements intuitively reflect their cybersickness
intensity. The study results demonstrate that sEMG signals
could be employed as a cybersickness measurement in VR
viewing experience analysis.

The proposed insights are a preliminary study of the cor-
relation between cybersickness and sEMG signals. It presents
the possibility to continuously measuring cybersickness during

user experience, which also demonstrates the necessity of
further investigation into the origins and impacts of cyber-
sickness. We believe that it will be worthwhile for VR content
creators to utilize the sEMG-based cybersickness analysis to
have a better understanding of their artwork in the future.
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